Structural analysis of the core region of O-lipopolysaccharide of Porphyromonas gingivalis from mutants defective in O-antigen ligase and O-antigen polymerase.
نویسندگان
چکیده
Porphyromonas gingivalis synthesizes two lipopolysaccharides (LPSs), O-LPS and A-LPS. Here, we elucidate the structure of the core oligosaccharide (OS) of O-LPS from two mutants of P. gingivalis W50, Delta PG1051 (WaaL, O-antigen ligase) and Delta PG1142 (O-antigen polymerase), which synthesize R-type LPS (core devoid of O antigen) and SR-type LPS (core plus one repeating unit of O antigen), respectively. Structural analyses were performed using one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy in combination with composition and methylation analysis. The outer core OS of O-LPS occurs in two glycoforms: an "uncapped core," which is devoid of O polysaccharide (O-PS), and a "capped core," which contains the site of O-PS attachment. The inner core region lacks L(D)-glycero-D(l)-manno-heptosyl residues and is linked to the outer core via 3-deoxy-D-manno-octulosonic acid, which is attached to a glycerol residue in the outer core via a monophosphodiester bridge. The outer region of the "uncapped core" is attached to the glycerol and is composed of a linear alpha-(1-->3)-linked d-Man OS containing four or five mannopyranosyl residues, one-half of which are modified by phosphoethanolamine at position 6. An amino sugar, alpha-D-allosamine, is attached to the glycerol at position 3. In the "capped core," there is a three- to five-residue extension of alpha-(1-->3)-linked Man residues glycosylating the outer core at the nonreducing terminal residue. beta-D-GalNAc from the O-PS repeating unit is attached to the nonreducing terminal Man at position 3. The core OS of P. gingivalis O-LPS is therefore a highly unusual structure, and it is the basis for further investigation of the mechanism of assembly of the outer membrane of this important periodontal bacterium.
منابع مشابه
Identification of the linkage between A-polysaccharide and the core in the A-lipopolysaccharide of Porphyromonas gingivalis W50.
UNLABELLED Porphyromonas gingivalis synthesizes two lipopolysaccharides (LPSs), O-LPS and A-LPS. The structure of the core oligosaccharide (OS) of O-LPS and the attachment site of the O-polysaccharide (O-PS) repeating unit [ → 3)-α-D-Galp-(1 → 6)-α-D-Glcp-(1 → 4)-α-L-Rhap-(1 → 3)-β-D-GalNAcp-(1 → ] to the core have been elucidated using the ΔPG1051 (WaaL, O-antigen ligase) and ΔPG1142 (Wzy, O-a...
متن کاملIdentification of a second lipopolysaccharide in Porphyromonas gingivalis W50.
We previously described a cell surface anionic polysaccharide (APS) in Porphyromonas gingivalis that is required for cell integrity and serum resistance. APS is a phosphorylated branched mannan that shares a common epitope with posttranslational additions to some of the Arg-gingipains. This study aimed to determine the mechanism of anchoring of APS to the surface of P. gingivalis. APS was purif...
متن کاملChanges in lipopolysaccharide profile of Porphyromonas gingivalis clinical isolates correlate with changes in colony morphology and polymyxin B resistance.
Virulence factors on the surface of Porphyromonas gingivalis constitute the first line of interaction with host cells and contribute to immune modulation and periodontitis progression. In order to characterize surface virulence factors present on P. gingivalis, we obtained clinical isolates from healthy and periodontitis subjects and compared them with reference strains. Colony morphology, aggr...
متن کاملThe redefinition of Helicobacter pylori lipopolysaccharide O-antigen and core-oligosaccharide domains
Helicobacter pylori lipopolysaccharide promotes chronic gastric colonisation through O-antigen host mimicry and resistance to mucosal antimicrobial peptides mediated primarily by modifications of the lipid A. The structural organisation of the core and O-antigen domains of H. pylori lipopolysaccharide remains unclear, as the O-antigen attachment site has still to be identified experimentally. H...
متن کاملMembrane-associated nucleotide sugar reactions: influence of mutations affecting lipopolysaccharide on the first enzyme of O-antigen synthesis.
Both the synthesis of lipopolysaccharide O-antigen and the synthesis of peptidoglycan in Salmonella typhimurium proceed via membrane-bound glycosylated lipid intermediates. The first enzyme of each pathway transfers a sugar phosphate from a nucleotide sugar to the glycosyl carrier lipid (P-GCL). Each enzyme catalyzes an exchange reaction between the reaction product urine monophosphate, and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 191 16 شماره
صفحات -
تاریخ انتشار 2009